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Previous studies have shown that EEG data can be used to distinguish between different levels of mental 
load, and specifically between the cognitive effort applied in performing a task (Grimes et al., 2008; Dirican 
and Göktürk, 2011). Passive Brain Computer Interfaces (BCI) use machine learning predictions of mental 
load made from short durations of EEG recordings in order to change how computer systems operate. This 
is different than traditional EEG studies that average EEG recordings into grand means, which are then 
evaluated using descriptive and inferential statistics. Nevertheless, EEG data is still posing many challenges 
such as being highly non-stationary and having large signal differences between recording sessions and 
between participants (Fairclough and Lotte, 2020). These challenges make passive BCI systems fragile. 
However, Passive BCI has been successfully applied to useful tasks like estimating cooperation level in 
aviation (Verdiere et al., 2019) and predicting the decision that will be made by the user when notifications 
are received (Bolton et al., 2021). To improve the state of the art in Passive BCI, a standardized EEG dataset 
was shared openly (Hinss et al., 2021) and a competition held with the Neuroergonomics conference aims 
to improve performance of passive BCI systems. 

The objective of this analysis is to produce a machine learning classifier with the best possible average 
cross-session intra-participant accuracy at detecting the mental load state from the three possibilities of 
‘difficult’, ‘medium’ or ‘easy’. We documented our method of replicating models described in prior 
research and then applying general time-series models and refining our design to achieve a best model. 

The EEG dataset consists of 15 participants (6 females, average age 25 y.o) who performed three 
independent experimental sessions spaced 7 days apart. Each session consisted of three 5-minute blocks, 
each with a different workload level, presented in a random order. Preprocessing performed by the 
dataset creators produced 149 2-second epochs for each difficulty level. The data consisted of 61-channels 
and was downsampled to 250Hz. The dataset was downloaded to a local computer the baseline code was 
reimplemented, and extended with functionality to train a model with all of the labelled data to predict 
the class of the unlabelled test data. We selected a set of processing and modelling strategies from 
literature reviews of Deep learning applied to EEG (Roy et al., 2019) and of EEG signal processing (Lotte, 
2014).  

We used the time-series library sktime (Löning et al., 2019) within a SKLearn pipeline to perform data 
transformation and classification. A series of Random Forest models with different numbers of model 
features were trained on the concatenated data from all 61 EEG electrodes, accuracy and time taken are 
shown in Table 1. We found that 300 features performed best and that a model trained on the first labeled 
session and tested on the second labeled session produced an average classification accuracy of 50.28% 
(Figure 1). The model evaluation trained each configuration once using the full set of recordings from the 
first session and evaluated the accuracy on the full set of recordings from the second session. To produce 
the submission, the same model was trained on data from the two sessions and predictions made on the 
unlabeled data (Bolton, 2021). Our contribution to the state of the art is the application of Random Forest 
to cross-session Passive BCI producing good accuracy. 



Number of features Mean cross-session 
accuracy 

Time (training and 
evaluation) 

80 49.43% 2h06m 
200 49.95% 5h09m  
300 50.28% 7h42m 
400 50.00% 10h15m 

Table 1. Accuracy and Time taken to train and test model with different number of Random Forest features. We see a 
diminishing accuracy with more than 300 features 

 

Figure 1. Cross-session classification accuracies (Note our minimum accuracy produced is 41.6%).  
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